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▪ Task specification

▪ Goals

▪ Related Approaches

▪ Solution

1. Roadmap generation

2. Conflict annotation

3. Discrete planning

4. Continuous refinement

▪ Experiments

▪ Trying different methods

▪ Trying different environments



▪ N drones

▪ Bounded environment

▪ Dense obstacles 

▪ Each robot has collision 

model

▪ Labeled vs unlabeled



Find time T and function 𝑓𝑖: 0, 𝑇 → 𝑅3 and aim for:

▪ Soundness

▪ No collisions

▪ Completeness

▪ Optimality

▪ Time (makespan)

▪ Energy (sum of costs)

▪ Computational performance

▪ Physical plausability



▪ Carthesian product of simple robot planning

▪ Robot-robot collisions = space obstacle

▪ Computationally infeasible

▪ Graph search perspective

▪ Reasonable for high congestion problems

▪ Piecewise linear path

▪ Continuous settings

▪ Solving one big optimization task

▪ Tightly coupled

▪ Usually do not scale well



▪ Environment bounded

▪ Obstacles are convex polytopes

▪ Drones often identified by 6 coordinates

▪ But authors use only 3

▪ Collision model is an ellipsoid

▪ Downwash effect

▪ Continuity up to 4th derivative



▪ Undirected connected graph

▪ We define 𝑙𝑜𝑐 ∶ 𝑉 → 𝑅3

▪ Dispersion parameter = diameter of the largest sphere not containing any vertex 

▪ Desired properties

▪ Connected

▪ Well approximating

▪ Sparse (otherwise many robot-robot conflicts)



▪ Two approaches:

▪ Grid-based roadmap

▪ 6-connected

▪ Optimality when dispersion 
approaches zero 

▪ Sparse roadmap spanners

▪ Spanner (graph theory) = subgraph 
with dropped

edges preserving shortest     
distances up to a constant factor

▪ First create dense graph

▪ Drop edges and vertices



Output = the graph where edges and vertices are annotated with a conflict set 

Conflict types:

▪ Vertex-vertex (VV)

▪ Edge-vertex (EV)

▪ Edge-edge (EE)



▪ Two conflict models:

▪ SWEPT collision model

▪ Simple

▪ Allows arbitrary velocity profiles

▪ FCL collision model

▪ Define 𝑚𝑜𝑡 𝑒, 𝑡 ; 𝑡 ∈ [0,1]

▪ Uses known velocity profiles (such as constant)

▪ Why wouldn’t this work with arbitrary velocities?

▪ Quadratic time complexity



▪ We are given an annotated roadmap

▪ Traverse edge / wait actions

▪ Schedule for robot = (𝑙𝑜𝑐 𝑢0
𝑖 , 𝑙𝑜𝑐 𝑢1

𝑖 , … 𝑙𝑜𝑐(𝑢𝐾
𝑖 ))

▪ Robot travels on a line segment along edges

▪ We formulate additional constraints => MAPF/C

robot

timestep



Authors formulated 8 properties that should hold in MAPF/C:

▪ P1: Start vertices

▪ P2: Unique goal locations

▪ P3: Stay at vertex/move along the edge

▪ P4: No vertex collisions

▪ P5: No edge collisions

▪ P6: No ConVV conflicts

▪ P7: No ConEV conflicts

▪ P8: No ConEE conflicts



Theorem 1: Solving labeledMAPF/C optimally with respect to cost or makespan is NP-hard.

▪ Proof: Follows from NP-hardness of the same problem for labeled MAPF.

▪ Theorem 2: Solving unlabeledMAPF/C optimally with respect to makespan is NP-hard.

▪ Proof: Reduction from independent set problem (𝐺𝑀𝐼𝑆, 𝑘𝑀𝐼𝑆).

▪ How do we construct IS of size k from the plan?

A ≤𝑝 B & A 𝑖𝑠 𝑁𝑃 hard → 𝐵 𝑖𝑠 𝑁𝑃 ℎ𝑎𝑟𝑑

𝐴 ≤𝑝 𝐵 ↔ ∃𝑓 ∀𝑥: 𝑥 ∈ 𝐴 ↔ 𝑓 𝑥 ∈ 𝐵; 𝑓 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙.

Recap:



▪ MAPF Tractable in polynomial time

1. Generate time-expanded graph

2. Find maximal flow

3. Reconstruct the plan from the maximal flow

▪ Q: Why wouldn‘t this work in the labeled case?

▪ Q: And what about unlabeled MAPF/C ?



▪ For each vertex a in roadmap and timestep we add two vertices and an edge

▪ For each edge and timestep we add gadget (P5 – no swapping)

▪ Connect consecutive timesteps for each vertex (P4 – no vertex collisions)

▪ Add source and sink

▪ Actions stay in vertex/move along edge



▪ It is not possible to encode generalized conflicts into the time expanded graph 
itself => adding constraints instead

▪ All necessary constraints can be handled via conflicting edges annotations: 𝑐𝑜𝑛 ∶
𝐸 → 2𝐸 (conflict set)

▪ VV generalized conflicts (P6)

▪ EE generalized conflicts (P7)

▪ EV generalized conflicts (P8)

▪ Blue edges should not be used for waiting 

problem => add pairs to conflict sets

▪ Now we have graph + con(e)



▪ To construct graph we need to know the number of timesteps

▪ How to find it?

▪ Two step approach:

▪ Solve classic unlabeled MAPF instance (no generalized conflicts, only checking 
feasibility)

For k = 1,2,4,8.. apply Edmond’s Karp algorithm to get lower bound 𝑘𝑚𝑖𝑛

▪ Linear search with all constraints (ILP)

For k = 𝑘𝑚𝑖𝑛 + 1; 𝑘 + +

Solution = SolveILP(G(k))

If solution != Fail

return solution



▪ We are given graph and conflicting pairs of edges

▪ Represent problem as ILP (NP-hard, unlabeled case -> we cannot do much better -
Theorem 2)

▪ 𝑧𝑢,𝑣 is flow on edge (u,v)



▪ Conflict-Based search – resolving conflicts one by one

▪ High level search

▪ Low level search

▪ Extension to MAPF/C is simple

▪ ECBS = Suboptimal variant of CBS

▪ Searches binary conflict tree

▪ Uses focal search (variant of A*) – frontier satisfies suboptimality factor



▪ Given discrete plan = sequence of waipoints

▪ Convert it to continuous and smooth trajectory

▪ Approach:

▪ Create safe corridors for each drone

▪ Optimize trajectory within given corridor

▪ Iteratively refine trajectories



▪ Corridor = sequence of convex polyhedra 𝑃𝑡
𝑑

▪ Safe corridor = drone can fly in it without collisions

▪ 𝑃𝑡
𝑑 is intersection of n halfspaces

▪ Notes:

▪ 𝑃𝑡
𝑑 is not necessarily bounded

▪ 𝑃𝑡
𝑑 and 𝑃𝑡+1

𝑑 can and usually will overlap



▪ Our planes only separate line segments,

We need to account for model and 

trajectory curve.

▪ Use SVM with margin 2 𝐸𝛼 to find the

hyperplanes (a lot of SVM subprograms

𝑂(𝐾𝑁2 + 𝐾𝑁𝑁𝑜𝑏𝑠) – > parallelizable with 
redundancy = 2)



▪ We have safe corridors

▪ Choose trajectory basis:

▪ A) Piecewise Polynomial -> polynomial inside
polyhedron is non-convex constraint

▪ B) Piecewise Bezier curves
▪ can be represented by convex constraints

▪ not passing through control points, lies in their convex hull



▪ Objective function:

▪ Can be rewritten as a quadratic program:

▪ We have n such programs – parallel 

execution



▪ Continuous trajectories often deviate heavily from discrete plan

▪ We can iteratively improve the trajectory:

1. Sample continuous trajectories

2. Replan

3. Perform continuous optimization

4. If not done, go to 1

Postprocessing:

FCL collision model + arbitrary velocity profiles => prevent vertex collisions (by 
edge subdivision)



▪ Simulations (200 drones)

▪ Swarm of quadrotors

▪ Crazyswarm

Trying various approaches for:

▪ Mapping 

▪ Roadmap generation

▪ Conflict annotation

▪ Discrete planning

▪ Continuous optimization

https://www.youtube.com/watch?v=36jCUTWGBAo


▪ Mapping 

▪ Oct-tree

▪ Choose correct leaf size (≈dispersion)

▪ Roadmap generation

▪ 6 neighbor grid

▪ SPARS 



▪ Collision model

▪ FCL

▪ SWEPT

▪ Discrete planning

▪ Labeled – ECBS

▪ Unlabeled 

▪ Labeling + ECBS

▪ ILP



▪ Examined iterative refinement

▪ Lowering acceleration peaks



OTHER EXPERIMENTS

▪ D

https://www.youtube.com/watch?v=7KIa9FlmbRc


▪ W. Hönig, J. A. Preiss, T. K. S. Kumar, G. S. Sukhatme and N. Ayanian, "Trajectory 
Planning for Quadrotor Swarms," in IEEE Transactions on Robotics, vol. 34, no. 4, pp. 
856-869, Aug. 2018, doi: 10.1109/TRO.2018.2853613.

▪ D. Mellinger and V. Kumar, "Minimum snap trajectory generation and control for 
quadrotors," 2011 IEEE International Conference on Robotics and Automation, 2011, 
pp. 2520-2525, doi: 10.1109/ICRA.2011.5980409.




