TRAJECTORY
PLANNING FOR
QUADROTOR

SWARN

Tomas Celko

PRESENTATION STRUCTURE

= Task specification
= Goals
= Related Approaches

= Solution
1. Roadmap generation

2. Conflict annotation
3. Discrete planning
4. Continuous refinement

= Experiments
= Trying different methods

= Trying different environments

THE TASK DESCRIPTION

= N drones

= Bounded environment

= Dense obstacles

= Each robot has collision
model

= labeled vs unlabeled

GOALS AND DESIRED PROPERTIES

Find time T and function f!: [0,T] — R3 and aim for:

= Soundness
= No collisions

= Completeness

= Optimality
= Time (makespan)
= Energy (sum of costs)

= Computational performance

= Physical plausability

RELATED APPROACHES

= Carthesian product of simple robot planning
= Robot-robot collisions = space obstacle

= Computationally infeasible

= Graph search perspective
= Reasonable for high congestion problems

= Piecewise linear path

= Continuous settings
= Solving one big optimization task
= Tightly coupled
= Usually do not scale well

ENVIRONMENT

» Environment bounded

= Obstacles are convex polytopes

= Drones often identified by 6 coordinates
= But authors use only 3

= Collision model is an ellipsoid

Rr(q) ={Ez+q: [z|2 <1}
where E = diag(rz, 7y, 7).

= Downwash effect

= Continuity up to 4th derivative

|.ROADMAP GENERATION

= Undirected connected graph
= We define loc : V - R?

= Dispersion parameter = diameter of the largest sphere not containing any vertex

= Desired properties
= Connected

= Well approximating
= Sparse (otherwise many robot-robot conflicts)

|.ROADMEP GENERATION (2

= Grid-based roadmap

= 6-connected

= Optimality when dispersion
approaches zero L e

= Sparse roadmap spanners - o - D -

= Spanner (graph theory) = subgraph
with dropped

edges preserving shortest
distances up to a constant factor

= First create dense graph

= Drop edges and vertices

(a) Grid-based roadmap. (b) SPARS-based roadmap.

2.CONFLICT ANNOTATION

Output = the graph where edges and vertices are annotated with a conflict set
Condflict types:

= Vertex-vertex (VV)

= Edge-vertex (EV)

= Edge-edge (EE)

—

2.CONFLICT ANNOTATION (2)

= Two conflict models:
= SWEPT collision model
= Simple
= Allows arbitrary velocity profiles

= FCL collision model conEE'(e) = {d € Eg |3t € [0,1]
= Define mot(e, t); t € [0,1] Rr(mot(d,t)) N Rr(mot(e,t)) # 0}
= Uses known velocity profiles (such as constant) conEV'(e) = {u € Vg |3t € [0,1]
= Why wouldn’t this work with arbitrary velocities? Rr(loc(u)) N Rr(mot(e, t)) # 0}

= Quadratic time complexity

J.DISCRETE PLANNING

= We are given an annotated roadmap
= Traverse edge / wait actions /
= Schedule for robot = (loc(u(i)), loc(ui), . loc(uk))

robot

= Robot travels on a line segment along edges \ timestep

= We formulate additional constraints => MAPF/C

22—
. !

MAPE/C PROPERTIES

Authors formulated 8 properties that should hold in MAPF/C:
= P1: Start vertices

= P2: Unique goal locations

= P3: Stay at vertex/move along the edge

= P4: No vertex collisions

= P5: No edge collisions

= P6: No ConVV conflicts

= P7: No ConEV conflicts

= P8: No ConEE conflicts

MAPE/C PROPERTIES (2)

Theorem 1: Solving labeled MAPF/C optimally with respect to cost or makespan is NP-hard.
= Proof: Follows from NP-hardness of the same problem for labeled MAPFE.

= Theorem 2: Solving unlabeled MAPF/C optimally with respect to makespan is NP-hard.
= Proof: Reduction from independent set problem (G;s, kyis)-

= How do we construct IS of size k from the plan?

(@) Gnmrs (®) Grrarr/c

UNLABELED MAPE/C

= MAPF Tractable in polynomial time

1. Generate time-expanded graph
2. Find maximal flow
3. Reconstruct the plan from the maximal flow

= Q: Why wouldn‘t this work in the labeled case?
= Q: And what about unlabeled MAPF/C ?

GENERATING TIME EXPANDED GRAPH (P1-
P5)

= For each vertex a in roadmap and timestep we add two vertices and an edge
= For each edge and timestep we add gadget (P5 — no swapping)

= Connect consecutive timesteps for each vertex (P4 — no vertex collisions)

= Add source and sink

= Actions stay in vertex/move along edge

"a

’u,'() 5 ’1

- u
- , 1
sl (a)) (W) / >—>(> L
b gy —>%‘ x source \ /
w o / - A N \
9 @ \LY, k) “0 ~Wo— “1 -y

(a) O (b) “Gadget” for flow-graph construction. (¢c) G with K = 2.

ADDING ADDITIONAL CONSTRAINTS (P6-P8)

= It is not possible to encode generalized conflicts into the time expanded graph
itself => adding constraints instead

= All necessary constraints can be handled via conflicting edges annotations: con :
E - 2F (conflict set)

= VV generalized conflicts (P6)
= EE generalized conlflicts (P7)
= EV generalized conlflicts (P8)

= Blue edges should not be used for waiting

problem => add pairs to conflict sets 'u;’,‘» we)— u‘;\» w
' 4
» A — / .
= Now we have graph + con(e) / e \‘ D N sink
source u(,\r /u“ - 'Q /u 1
AT e ¥ aai
U ~wo)—(u] -(wy

(c) G with K = 2,

FINDING OUT ACTUAL MAKESPAN

= To construct graph we need to know the number of timesteps
= How to find it?

= Two step approach:

= Solve classic unlabeled MAPF instance (no generalized conflicts, only checking
feasibility)

For k= 1,2,4,8.. apply Edmond’s Karp algorithm to get lower bound k,,;,
= Linear search with all constraints (ILP)
Fork=kp,+ 1 k++
Solution = SolvelLP(G(k))
If solution != Fail
return solution

FINDING MAXIMUM FLOW

= We are given graph and conflicting pairs of edges

= Represent problem as ILP (NP-hard, unlabeled case -> we cannot do much better -
Theorem 2)

= Zy » 1s flow on edge (u,v)

MAXIMIZE E Z(source,v)
(source,v)eEp
: !
subject to g Z(u,v) = E Z(v,w) YV € VE
(u,v)EEFR (v, w)EER

Ze + Z 2o <1 Veeé&p

e’ € con(e)

LABELED MAPE/C

= Conflict-Based search — resolving conflicts one by one
= High level search

= Low level search
= Extension to MAPF/C is simple

= ECBS = Suboptimal variant of CBS
= Searches binary conlflict tree

= Uses focal search (variant of A*) — frontier satisfies suboptimality factor

TRAJECTORY OPTIMIZATION

= Given discrete plan = sequence of waipoints
= Convert it to continuous and smooth trajectory

= Approach:
= Create safe corridors for each drone
= Optimize trajectory within given corridor
= Iteratively refine trajectories

“I 1 iﬂ“ M~

0

LV

.

FINDING SAFE CORRIDORS

= Corridor = sequence of convex polyhedra P£
= Safe corridor = drone can fly in it without collisions
« P2 is intersection of n halfspaces

= Notes:
= PZ is not necessarily bounded

« P& and P2 ; can and usually will overlap

_ T .
fi C {T : &E;._j‘} T < .JSIE:LJ}}

_ AT
b C{x: m_fgf"‘” T > .{3,&1"}}}

Fig. 7. Safe corridor for one robot over entire flight. Corridor polytopes are
colored by timestep. Black line: underlying discrete plan. Shaded tube: smooth
trajectory after first iteration of refinement. Highlighted in red: polytope,
discrete plan segment, and trajectory polynomial piece for a single timestep.

FINDING SAFE CORRIDORS (2)

= Our planes only separate line segments,
We need to account for model and

trajectory curve.

i) T i o(i.j ij

ﬂ:i J) f (f) < d.’E) — ||E{1£ "?)”2 Yt € [tk—latk]
i L (3,4 ij

o () > B + | Eaf P2Vt € [teo,ti]

= Use SVM with margin 2||E«|| to find the
hyperplanes (a lot of SVM subprograms

O(KN? + KNN,,.) — > parallelizable with
redundancy = 2)

Fig. 7. Safe corridor for one robot over entire flight. Corridor polytopes are
colored by timestep. Black line: underlying discrete plan. Shaded tube: smooth
trajectory after first iteration of refinement. Highlighted in red: polytope,
discrete plan segment, and trajectory polynomial piece for a single timestep.

€

TRAJECTORY AND
PROBLEM
REPRESENTATION

= We have safe corridors
= Choose trajectory basis:

_ 2 D
- A) Piecewise Polynomial -> polynomial inside P(t) = a0+ ait +ast” +---+apt
polyhedron is non-convex constraint

= B) Piecewise Bezier curves f(t) = bo,p(t)yo + b1,p(t)yr + -+ + bp p(t)yp
= can be represented by convex constraints
= not passing through control points, lies in their convex hull

bvzﬂr(m) - (n)my(l —E)ﬂ_”! V= [}:"'1n:|

L

@

TRAJECTORY OPTIMIZATION

C T
= Objective function: cost(f') = Z Ve [
Jo

c=1

N
—fi|| at
') 2

= Can be rewritten as a quadratic program:
minimize }’T(BTQB)y
subject to yi 4 € Pr Vi, k,d
i) =", f1(T) = g*®
f* continuous up to derivative C'
= We have n such programs — parallel

execution

ITERATIVE REFINEMENT &
POSTPROCESSING

= Continuous trajectories often deviate heavily from discrete plan
= We can iteratively improve the trajectory:

1. Sample continuous trajectories

2. Replan

3. Perform continuous optimization

4. Ifnotdone,gotol

Postprocessing:

FCL collision model + arbitrary velocity profiles => prevent vertex collisions (by
edge subdivision)

EXPERIMENTS

= Simulations (200 drones)
= Swarm of quadrotors

» Crazyswarm

Trying various approaches for:
= Mapping
= Roadmap generation
= Conflict annotation
= Discrete planning
= Continuous optimization

https://www.youtube.com/watch?v=36jCUTWGBAo

MAPPING AND ROADMAP -

EXPERIMENTS i

= Oct-tree

= Choose correct leaf size (=dispersion)

= Roadmap generation
= 6 neighbor grid
= SPARS

(a) Grid-based roadmap. (b) SPARS-based roadmap.

CONFLICTS AND DISCRETE PLANNING

= FCL
= SWEPT

= Collision model

= Discrete planning
= Labeled — ECBS

= Unlabeled
= Labeling + ECBS

= ILP
Row Mapping Roadmap Conflicts Discrete Continuous
docto | nodes || Method | dyoaa | [VE| | |EE] | trm || Method | Cyy | Cee | Cey | teons Method | K | tgis || iter | teon | T
1 0.1 17k Grid 0.5 078 | 3331 | 0.2 FCL 1.5 3.2 2.6 9.0 ECBS(1.5) | 24 | 0.4 6 47 6.5
2 0.04 | 677k Grid 0.5 978 | 3331 | 0.2 FCL 1.5 3.2 2.6 9.0 ECBS(1.5) | 24 | 0.4 6 380 | 6.5
3 0.1 1 7k SPARS | 0.5 888 | 3495 | 36 FCL 0.8 7.5 1.7 9.6 ECBS(2.0) | 30 | 1.5 6 56 | 11.5
4 0.1 1 7k Grid 0.2 13k | 40k 1.5 FCL 159 | 11.9 | 24.0 | 1043 ECBS(1.5) | 54 | 10 6 103 | 7.7
5 0.1 1 7k Grid 0.5 978 | 3331 | 0.2 Swept 1.5 26 2.6 0.6 ECBS(2.5) | 36 | 1.4 6 29 8.5
6 0.1 1 7k Grid 0.5 978 331 | 0.2 FCL 1.5 3.2 2.6 9.0 ILP 20 | 222 6 32 | 54
7 0.1 1 7k Grid 0.5 978 31 | 0.2 FCL 1.5 3.2 2.6 9.0 ECBS(1.5) | 24 | 04 2 17 9.5

CONTINUOUS OPTII

[ZATION

6 g
= Examined iterative refinement 25} 2 5l
— e
= Lowering acceleration peaks st 815}
®3 <
E L l b
z 1t %ﬁj‘ I
o =
£ o
Doe e 0— e
1 2 3 4 5 6 1 2 3 4 5 (3]
iteration iteration

(a) 1 iteration (b) 2 iterations (c) 6 iterations

0THER EXPERIMENTS

Roadmap Conflicts Discrete Continuous
Example |labeled | N Env. Size occupied || |VEg| | |€E| |t,~m Cyy | Cee | Cey | teons || K | tais || tinp) | ti(gp) [tcon | T

Flight Test | No 32 9 X 5.5 x 2.2 4 % 873 | 3430 | 50 08 | 28 | 1.8 | 0.8 [|28(0.5 2.0 39 28 | 6.5
Wall32 No 32 | 75X 065X 25 6 % 921 | 3536 | 36 08 [27.7] 1.7 | 0.8 (|41 45 1.6 335 35 [11.6
Maze50 No 50| 10x6.5%x2.5 30 % 1045 | 3221 | 82 1.1 (242 22 | 0.7 |[48] 44 1:3 12.3 | 133 | 163
Sort200 No (200]14.5x 14.5x 25| 31 % 3047 | 7804 | 85 11 |388| 20 | 35 ||39] 25 21 34 | 411 |11.7
Swap50 Yes | 50 | 7.5x6.5x%x2.5 6 % 869 (3371 | 34 08 | 27 | 1.6 | 0.7 [|48](15 34 94 78 | 144

(a) Full 32-robot trajectory plan after six iterations of refinement. (b) Picture of the final configuration after the test flight. A video is available
The start and end positions are marked by squares and filled circles, as supplemental material.
respectively.

https://www.youtube.com/watch?v=7KIa9FlmbRc

SOURCES

= W. HOnig, J. A. Preiss, T. K. S. Kumar, G. S. Sukhatme and N. Ayanian, "Trajectory
Planning for Quadrotor Swarms," in IEEE Transactions on Robotics, vol. 34, no. 4, pp.
856-869, Aug. 2018, doi: 10.1109/TR0O.2018.2853613.

= D. Mellinger and V. Kumar, "Minimum snap trajectory generation and control for
guadrotors," 2011 IEEE International Conference on Robotics and Automation, 2011,
pp. 2520-2525, doi: 10.1109/ICRA.2011.59804009.

THANK YOU FOR YOUR ATTENTION
QUESTIONS?

